Active Roll Stabilization using Canard Control Surfaces

Prepared for the 2025 IREC

Why Roll Stabilization?

- 3 years of Variable Drag
 Airbrake System
- Roll detrimental to in-flight performance
- Next step in team goal

In-Flight Video From Previous Projects

Why Canards?

- Compared reaction flywheel vs. aerodynamic canard system
 - Flywheel offered low drag but had high mass, power draw, and integration complexity
 - Required 1.8 kg wheel @ 5100 RPM for 0.0096 N·m² inertia
 - Structural and energy concerns led to rejection
- Chose canard-based system for simplicity and efficiency
- Evaluated two mechanical actuation designs:
 - Belt-drive: low backlash, but tension/alignment issues risked desync
 - Hybrid gear + linkage: tolerates misalignment, controlled backlash enables passive neutral return on power loss

Design Selection

Bevel Gear Design

A hybrid 4 bar-linkage, beveled gear approach

- Major Design Constraint:
 Mechanically synchronized control surfaces to avoid pitching moments
- Shifting rotational actuations from a central servo drives canard rotation
- Fail safe by offsetting pivot point forward of CP

Animation of Canard Mechanism

Top View of Canard System

CFD Simulations

Mach Number Contour of Aft Section

Dynamic Pressure Number Contour of Aft Section

DUKE(A)AERO

Aerodynamics Problems

- 1. Downstream effects on fins
- 2. Loss of overall rocket stability
- 3. Center of Pressure of Canards

Results

- 1. Low downstream effects on fins
- 2. CP of canards for pivot selection
- 3. Maintained high stability caliber (meeting IREC requirements)

CFD Simulations (cont'd)

Center of Pressure on Canard Blade

Canard Placement

- 18 test cases based on distance from bottom of rocket and canard angle of attack
- 61-inch placement proven to be most aerodynamic and most drag variance
- Proved minimal downstream effects on air brakes and fins

Pivot Placement

- CP @ 39 mm from bottom of canard
- NACA 0006 airfoil
- Pivot above CP for fail safe

Vibration Analysis

I1: Initial Fin

12: CoP, CoM Optimized Pivot

I3: CoP Optimized and Damping Grease

Manufacturing

- Housing milled in-house using CNC milling machine
- 6061-T6 aluminum selected for strength-to-weight and machinability
- Machining operations included: facing, boring, and pocketing
- Other components (servo plate, linkages, shafts, flanges, etc) were manufactured with waterjet, manual mill, and lathe

Canard Housing in CNC Setup

4th-Axis Milling, Housing

Machining Results

Post-Milling Housing

Manufacturing (cont'd)

- 1. 3D Printed PETG molds, sanded smooth
- Layer in dry, chopped carbon fiber with ambient curing epoxy
- 3. Bottom out mold in vise over 5-10 minutes, cure under pressure
- Clean and sand surfaces for smooth finish
- 5. Drill and tap necessary holes

3D-Printed Vise Mold

Forged Carbon Fiber Canard

Manufacturing (cont'd)

Canard Blade Alignment System

- Linkages & bevel gear subassembly are individually indexed
- Each component individually match-machined to its mating part, ensuring optimal tolerance, minimizing freeplay
- 3D-printed jig to ensure true alignment of canard positions

Assembly

Canard System Assembled

Blade Integration

Control Software

Bang-Bang; Roll Rate (Left), Canard Angle (Right)

4.0 - 3.5 - 3.0 - 10 - 2.5 - 3.0 - 4.0 - 2.5 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 2.0 - 3.0 - 4.0 - 3

Duke | PRATT SCHOOL of ENGINEERING

Control Software (cont'd)

Step Response Tune

- Step response test to tune P & I gain values
- kP = 61.4, kl = 0.98
- Stress test with weather & wind gusts in RocketPy
- Good control authority, chosen for flight

THANK YOU

Does anyone have any questions?

Follow the team: dukerocketry.com

@duke_aero

Duke AERO Society

Contact as at dukerocketry@qmail.com

Thank you to our sponsors:

